Liquidity, Default Risk, and the Information Sensitivity of Sovereign Debt

Stelios Fourakis

University of Minnesota

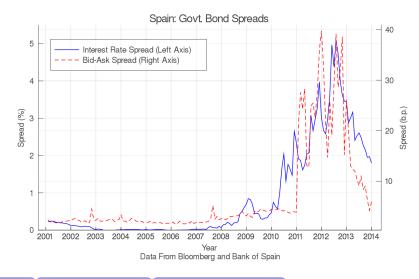
foura001@umn.edu

June 5, 2020

This Paper

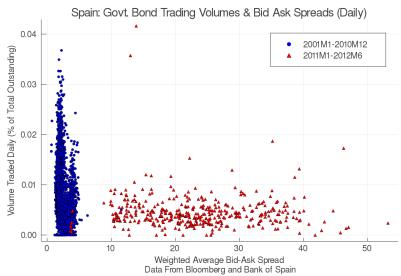
- Document empirical relationships between interest rate spreads, liquidity, and default risk in Spain.
 - Bid-Ask Spread = $Y\overline{T}M_{Bid} Y\overline{T}M_{ASK}$
- Explain variation in liquidity measures as the equilibrium result of some traders having private information.
- Match business cycle patterns of debt accumulation in a developed country using more flexible preferences.

Bid-Ask Spreads and Interest Rates: Spain



▶ vs. CDS S 🚺 ▶ Bid-Ask Spread Time Series 🚺 ▶ Interest Rate Spread Time Series

Liquidity and Bid-Ask Spreads: Spain



Literature Review

- Passadore and Xu (2018) and Chaumont (2018):
 - This paper has no search frictions in secondary markets.
 - Differences in valuations not driven by permanent changes in investor preferences (good investor vs. bad investor).
- Gorton and Ordonez (2014 and 2019) and Dang, Gorton, and Holmstrom (2015):
 - This paper implements a version of their "information sensitivity" concept.

Key Ingredients

- Model of external sovereign debt a la Eaton Gersovitz (1981).
- Add model of secondary market interactions with:
 - **()** Ability of some agents to acquire private, payoff-relevant information
 - Anonymous trading
 - Sandom differences in fundamental valuations of bonds between buyers and sellers

Environment

- Small open economy.
- Output is a Markov Process y(s).
- Benevolent government and representative consumer. Recursive preferences.
- Single long term bond: maturity rate λ & coupon rate κ
- While in default, output is reduced.
- Continuum $[0, \overline{B}]$ of risk neutral, competitive international investors, each of whom can hold a unit of debt.
- Current investors may spend f(π) to access information about y(s') one period ahead of time with probability π.

Timing

- Income and reentry realized.
- ② Default decisions.
- S Primary market opens, borrowing decisions made, auction occurs.

Timing

- Income and reentry realized.
- 2 Default decisions.
- S Primary market opens, borrowing decisions made, auction occurs.
- A noisy signal ŷ' about GDP in the next period becomes available.
 Current investors may attempt to access it at cost.
- Surrent investors' random taste shocks are realized.

Timing

- Income and reentry realized.
- 2 Default decisions.
- Irimary market opens, borrowing decisions made, auction occurs.
- A noisy signal ŷ' about GDP in the next period becomes available.
 Current investors may attempt to access it at cost.
- Surrent investors' random taste shocks are realized.
- Secondary market opens:
 - Random matching.
 - Bid and ask prices submitted simultaneously.
 - If $p_{bid} \ge p_{ask}$, the transaction clears at p_{bid} .
 - New purchasers replace exiting sellers.

Government Problem

$$W(s,b) = \max_{d \in \{0,1\}} (1-d) W^{R}(s,b) + dW^{D}(s)$$
(1)

Conditional on repayment:

$$W^{R}(s,b) = \max_{c,b'} U(c, \overline{W}(s,b'))$$
such that
$$c + (\lambda + (1-\lambda)\kappa)b = y(s) + q(s,b')(b' - (1-\lambda)b)$$
(3)

Conditional on default:

$$W^D(s) = U(y(s) - \phi(s), \bar{W}^D(s))$$
(4)

where $\mu(.)$ is a certainty equivalent operator and:

$$\bar{W}(s,b') = \mu(W(s',b')|s) \qquad \bar{W}^D(s) = \mu(W(s',0),W^D(s')|s)$$
 (5)

Secondary Markets

• Risk neutrality and competitiveness of lenders:

$$q(s,b') = \max_{\pi} (1-\pi) q_U(s,b') + \pi q_I(s,b') - f(\pi)$$
(6)

- $\pi_{S}(s, b') =$ equilibrium proportion of current investors who obtain access to \hat{y}' .
- q_U(.), q_I(.) = value of being uninformed or informed, respectively.
 π_S(s, b') ∈ (0, 1) implies:

$$q_{I}(s,b') - f'(\pi) = q_{U}(s,b')$$
(7)

Secondary Markets - Notation

• v denotes the undiscounted unit value of the asset to an uninformed agent.

$$v(s,b') = E[(1 - d(s',b'))(\lambda + (1 - \lambda)(\kappa + q(s',b''(s',b'))))|s] (8)$$

Secondary Markets - Notation

• v denotes the undiscounted unit value of the asset to an uninformed agent.

$$v(s,b') = E[(1 - d(s',b'))(\lambda + (1 - \lambda)(\kappa + q(s',b''(s',b'))))|s] (8)$$

• $\hat{v} \sim G(.)$ denotes the random variable which is the undiscounted unit value of the asset to an informed agent (and of course $E[\hat{v}] = v$).

$$\hat{v}(s, \hat{y}', b') = E[(1 - d(s', b'))(\lambda + (1 - \lambda)(\kappa + q(s', b''(s', b'))))|s, \hat{y}']$$
(9)

Secondary Markets - Notation

• v denotes the undiscounted unit value of the asset to an uninformed agent.

$$v(s,b') = E[(1 - d(s',b'))(\lambda + (1 - \lambda)(\kappa + q(s',b''(s',b'))))|s] (8)$$

- v̂ ~ G(.) denotes the random variable which is the undiscounted unit value of the asset to an informed agent (and of course E[v̂] = v).
 v̂(s, ŷ', b') = E[(1 d(s', b'))(λ + (1 λ)(κ + q(s', b''(s', b'))))|s, ŷ'] (9)
- $\hat{\delta} \sim F(.)$ denotes the random taste shock of current investors.
- δ denotes the constant, known taste shock of new investors.

Secondary Markets - Sellers

Given any bid strategy of buyers and their own $\hat{\delta},$ sellers solve:

$$q_U(v|\hat{\delta}) = max_{p_{S,U}} \mathbf{1}\{p_{S,U} > p_B\}\hat{\delta}v + \mathbf{1}\{p_{S,U} \le p_B\}p_B$$
(10)

or:

$$q_{I}(\hat{v}|\hat{\delta}) = max_{p_{S,I}} \mathbf{1}\{p_{S,I} > p_{B}\}\hat{\delta}\hat{v} + \mathbf{1}\{p_{S,I} \le p_{B}\}p_{B}$$
(11)

Secondary Markets - Sellers

Given any bid strategy of buyers and their own $\hat{\delta},$ sellers solve:

$$q_U(v|\hat{\delta}) = \max_{p_{S,U}} \mathbf{1}\{p_{S,U} > p_B\}\hat{\delta}v + \mathbf{1}\{p_{S,U} \le p_B\}p_B$$
(10)

or:

$$q_{I}(\hat{v}|\hat{\delta}) = \max_{p_{S,I}} \mathbf{1}\{p_{S,I} > p_{B}\}\hat{\delta}\hat{v} + \mathbf{1}\{p_{S,I} \le p_{B}\}p_{B}$$
(11)

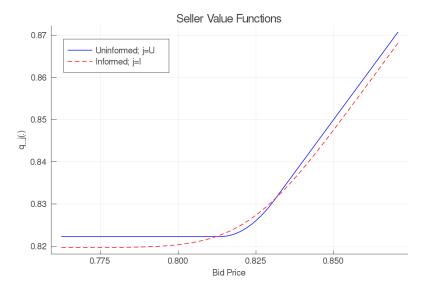
Since transactions clear at the bid price:

$$p_{S,U}^{\star}(\hat{\delta}, \mathbf{v}) = \hat{\delta}\mathbf{v} \qquad p_{S,I}^{\star}(\hat{\delta}, \hat{\mathbf{v}}) = \hat{\delta}\hat{\mathbf{v}} \qquad (12)$$

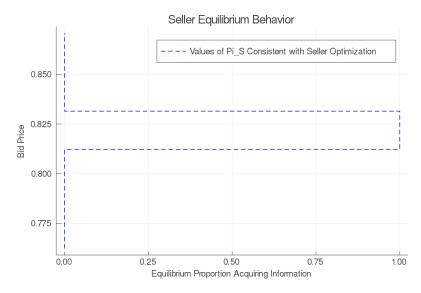
Probabilities of trading at a given bid price p_B :

$$Pr(Trade|U, v)(p_B) = F(\frac{p_B}{v}) \qquad Pr(Trade|I, \hat{v})(p_B) = F(\frac{p_B}{\hat{v}}) \qquad (13)$$

Secondary Markets - Seller Values



Secondary Markets - Seller Equilibrium Behavior



Secondary Markets - Buyers

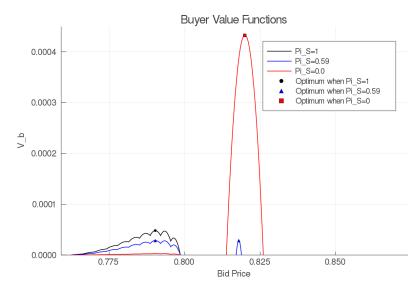
• Buyers then solve:

$$max_{p_B}(1-\pi_S)(\delta v - p_B)F(\frac{p_B}{v}) + \pi_S\left(-Pr(\hat{v}=0)p_B + \int_V (\delta \hat{v} - p_B)F(\frac{p_B}{\hat{v}})dG(\hat{v})\right)$$
(14)

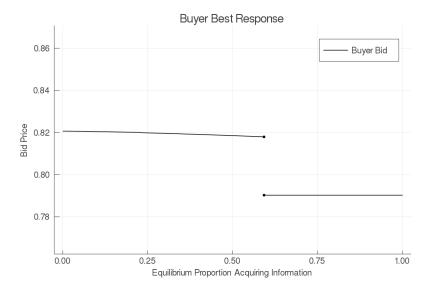
• Mechanism driving bid ask spreads:

 $(\delta \hat{v} - p_B)$ negatively correlated with $F(\frac{p_B}{\hat{v}})$

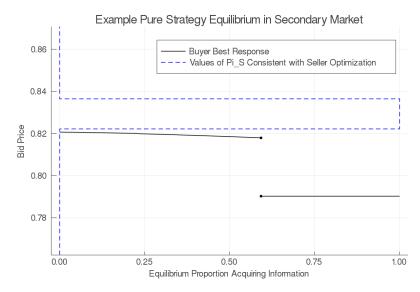
Secondary Markets - Buyer Values



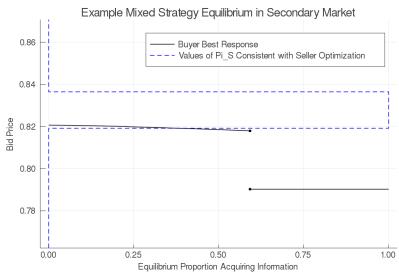
Secondary Markets - Buyer Best Response



Secondary Markets - Equilibrium



Secondary Markets - Equilibrium



Functional Forms

• Epstein-Zin Preferences:

$$U(c, \bar{W}'(s)) = ((1-\beta)c^{1-\psi} + \beta \bar{W}'(s)^{1-\psi})^{\frac{1}{1-\psi}}$$
(15)
$$\bar{W}'(s) = E[W(s')^{1-\gamma}|s]^{\frac{1}{1-\gamma}}$$
(16)

•
$$y(s) = \tilde{y} + m$$

 $\tilde{y}' = \rho \tilde{y} + \eta$ $\eta \sim^{iid} N(0, \sigma_{\eta}^2)$ $m \sim^{iid} TN(0, \sigma_m^2, -\bar{m}, \bar{m})$ (17)
• $\hat{\delta} \sim U(\underline{\delta}, \bar{\delta})$
• \hat{y}' parametrized as the true \tilde{y}' plus a noise term:

$$\hat{y}' = \tilde{y}' + \epsilon \qquad \epsilon \sim^{iid} N(0, \sigma_{\epsilon}^2)$$
 (18)

Calibration

All parameter values are monthly, where applicable.

Table 1: Fixed Parameters

Parameter	Value	Notes
ρ	0.9918	SE: 0.007
σ_η	0.0049	SE: 0.0005
σ_m	0.0015	SE: 0.0004
m	0.0031	
θ	0.0130	CE 2012
$\underline{\delta}$	0.990	Fix implied $r_f = 0.33\%$ when $\pi_S = 0$
δ	0.999	Fix B-A Spread = 2.5 b.p. when $\pi_S = 0$
$\bar{\delta}$	1.001	Fix volumes=37% when $\pi_S = 0$
λ	0.0122	Weighted Average Maturity of Debt
κ	0.0041	Average Coupon of Debt

Calibration

This leaves the parameters below.

Table 2: Calibrated Parameters

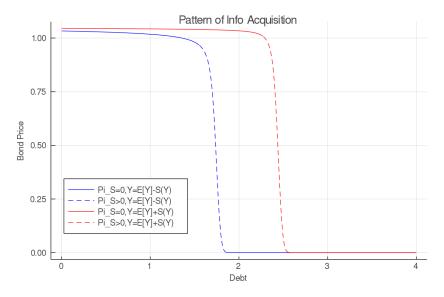
Parameter	Value	Notes
ψ	11.73	Govt Inverse IES
γ	4.83	Govt Risk Aversion
β	0.992	Govt Discount Factor
d_0	-0.110	Linear Default Cost
d_1	0.142	Quadratic Default Cost
f	0.000125	Cost of Information (Linear)
σ_ϵ	0.037	SD of Noise in \hat{y}

Results

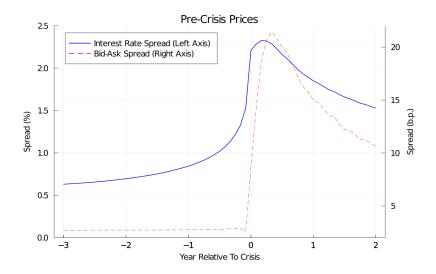
Table 3: Targeted Moments (Annualized Values)

Moment	Period	Data	Model
E[B'/Y]	Jan 1 2001 - June 30 2012	11.9%	13.5%
$ ho(B'/Y, \mathit{ln}(Y))$	Jan 1 2001 - June 30 2012	-0.76	-0.49
$\rho(NX/Y, In(Y))$	Jan 1 2001 - June 30 2012	-0.78	-0.10
$E[r-r^{f}]$	Jan 1 2001 - June 30 2012	0.72%	0.83%
$\sigma(r-r^f)$	Jan 1 2001 - June 30 2012	1.13%	1.05%
E[BA]	Jan 1 2001 - June 30 2012	5.5 b.p.	5.4 b.p.
$\rho(BA, r - r^f)$	Jan 1 2001 - June 30 2012	0.84	0.80

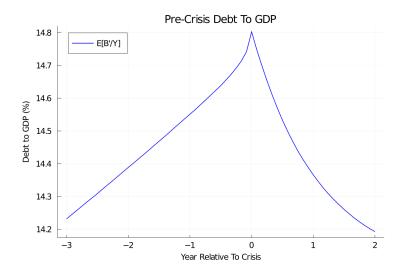
Results - Mechanism



Results - Crises



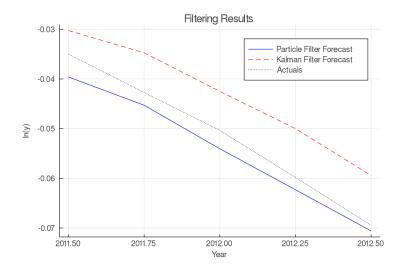
Results - Crises



Results - Validation

- In the model, realized bid-ask spreads depend on the distribution of forecasts obtained by investors.
- Those forecasts in turn depend on the true value of future output.
- Therefore, bid-ask spreads should provide information on future output.
- Does including this information improve forecasts of Spanish output during the crisis relative to the one-step ahead prediction of the Kalman Filter?

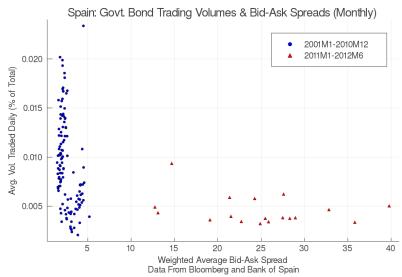
Results - Validation



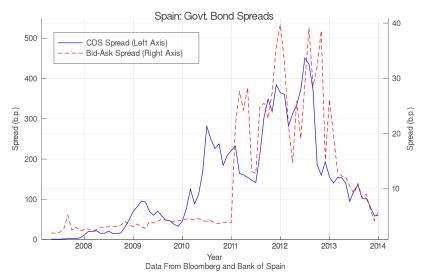
Conclusions

- A model of costly acquisition of private information by traders can rationalize the type of relationship between bid-ask spreads and interest rate spreads/default risk observed in the data.
- Predictions the model makes about the relationship between bid-ask spreads and future realizations of output are borne out in the data.

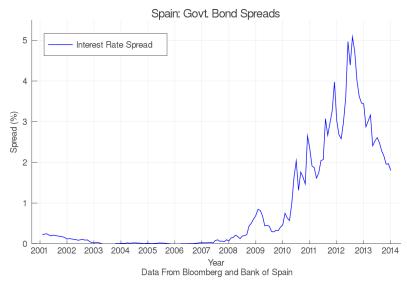
Liquidity and Bid-Ask Spreads: Spain



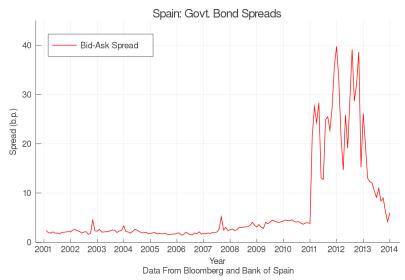
Bid-Ask Spreads and CDS Spreads: Spain



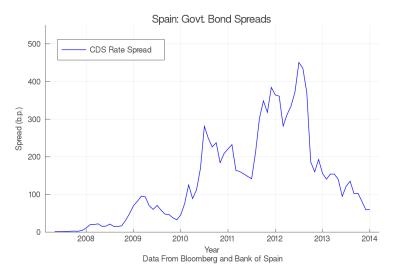
Interest Rates: Spain



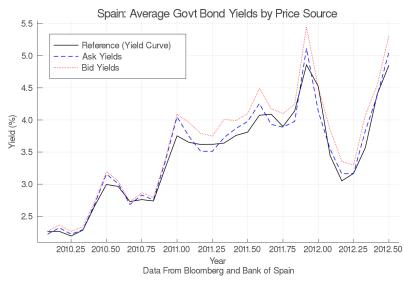
Bid-Ask Spreads: Spain



CDS Spreads: Spain



Bid-Ask Spreads: Spain



Secondary Markets - Equilibrium

